Convergence Properties of a Self-adaptive Levenberg-Marquardt Algorithm Under Local Error Bound Condition
نویسندگان
چکیده
We propose a new self-adaptive Levenberg-Marquardt algorithm for the system of nonlinear equations F(x) = 0. The Levenberg-Marquardt parameter is chosen as the product of ‖Fk‖ with δ being a positive constant, and some function of the ratio between the actual reduction and predicted reduction of the merit function. Under the local error bound condition which is weaker than the nonsingularity, we show that the LevenbergMarquardt method converges superlinearly to the solution for δ∈ (0, 1), while quadratically for δ∈ [1, 2]. Numerical results show that the new algorithm performs very well for the nonlinear equations with high rank deficiency.
منابع مشابه
On the convergence of the modified Levenberg-Marquardt method with a nonmonotone second order Armijo type line search
Recently, Fan [4, Math. Comput., 81 (2012), pp. 447-466] proposed a modified Levenberg-Marquardt (MLM) method for nonlinear equations. Using a trust region technique, global and cubic convergence of the MLM method is proved [4] under the local error bound condition, which is weaker than nonsingularity. The purpose of the paper is to investigate the convergence properties of the MLM method with ...
متن کاملAlgebraic rules for computing the regularization parameter of the Levenberg-Marquardt method
A class of Levenberg-Marquardt methods for solving the nonlinear least-squares problem is proposed with algebraic explicit rules for computing the regularization parameter. The convergence properties of this class of methods are analyzed. All accumulation points of the generated sequence are proved to be stationary. Q-quadratic rate of convergence for the zero-residual problem is obtained under...
متن کاملLocal convergence of Levenberg–Marquardt methods under Hölder metric subregularity
We describe and analyse Levenberg–Marquardt methods for solving systems of nonlinear equations. More specifically, we first propose an adaptive formula for the Levenberg–Marquardt parameter and analyse the local convergence of the method under Hölder metric subregularity. We then introduce a bounded version of the Levenberg–Marquardt parameter and analyse the local convergence of the modified m...
متن کاملLevenberg-marquardt Methods for Constrained Nonlinear Equations with Strong Local Convergence Properties
We consider the problem of finding a solution of a constrained (and not necessarily square) system of equations, i.e., we consider systems of nonlinear equations and want to find a solution that belongs to a certain feasible set. To this end, we present two Levenberg-Marquardt-type algorithms that differ in the way they compute their search directions. The first method solves a strictly convex ...
متن کاملConvergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions
We consider a class of Newton-type methods for constrained systems of equations that involve complementarity conditions. In particular, at issue are the constrained Levenberg–Marquardt method and the recently introduced Linear-Programming-Newton method, designed for the difficult case when solutions need not be isolated, and the equation mapping need not be differentiable at the solutions. We s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 34 شماره
صفحات -
تاریخ انتشار 2006